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Abstract
An exact property is established for the Green’s function of a uniform two-dimensional
interacting electron gas in a perpendicular magnetic field with spin–orbit interaction. It is
shown that the spin-diagonal Green’s function is exactly diagonal in the Landau level index
even in the presence of electron–electron interactions. For the Green’s function with different
spin indexes, only that with adjacent Landau level indexes is non-zero. This exact result should
be helpful in calculating the Green’s function approximately.

1. Introduction

The Green’s function approach has been widely and
successfully used in solid state physics dealing with many-
body systems [1–4]. In this systematic approach, the one-
particle Green’s function plays a central role, because one can
obtain from the Green’s function many system properties such
as charge and spin densities, the total energy, the dispersion of
elemental excitations and the linear response of the system to
an externally applied perturbation. In some cases, typically
in a single-particle system, one may calculate the Green’s
function exactly, even in closed form [5, 6]. However, in a
many-body system, the particle–particle interaction cannot be
handled fully and exactly in general, and one has to make
approximations in the calculation of the Green’s function.
Because of this, exact properties of the Green’s function are
desired, as they can be useful in examining the validity of
approximations [7, 8].

Recently, spin–orbit coupling has attracted considerable
experimental and theoretical interest [9–15]. The Green’s
function method has been used in examining the influence of
spin–orbit coupling. In a two-dimensional electron system
such as a semiconductor quantum well and heterostructure,
there are usually two kinds of spin–orbit coupling: the Rashba
type coupling, which comes from the inversion asymmetry of

the confining potential, and the Dresselhaus type coupling,
which is due to bulk inversion asymmetry [16, 17]. The
Rashba type coupling is more interesting, as the strength of the
Rashba spin–orbit coupling can be tuned externally by a gate
voltage [18–20]. For this reason, in this paper we will limit
ourselves to the Rashba spin–orbit coupling case.

The aim of the present paper is to derive an exact property
for the one-particle Green’s function of a two-dimensional
electron gas in a perpendicular magnetic field including the
influence of the Rashba spin–orbital coupling. The derived
result should be helpful in the approximate calculation of the
Green’s function. This paper is organized as follows: in
section 2, the derivation of the exact property will be presented.
Then a summary is given in the last section.

2. Derivation of the exact property

Let us start by considering the following Hamiltonian:

H =
∑

σ

1

2m

∫
drψ†

σ (r)
[

p + eA(r)

c

]2

ψσ (r)

+
∑

σ,σ ′

∫
drψ†

σ (r)
[
g∗μB B

σz

2

]

σ,σ ′
ψσ ′(r)
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+ 1
2

∑

σ,σ ′

∫
dr

∫
dr ′ψ†

σ (r)ψ
†
σ ′(r′)V (r − r′)ψσ ′(r′)ψσ (r)

+
∑

σ,σ ′

∫
drψ†

σ (r)
[
αRσx

(
py + eAy(r)

c

)

− αRσy

(
px + eAx(r)

c

)]

σ,σ ′
ψσ ′(r), (1)

where V (r) is the electron–electron interaction potential and
ψ is the field operator. αR gives the strength of the Rashba
interaction. g∗ gives the effective Zeeman spin splitting. The
Pauli matrices σx , σy and σz are given by [21]

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
,

σz =
(

1 0
0 −1

)
.

(2)

The coordinate of the system is chosen in such a way that
r = (x, y) is in the xy plane. The vector potential A produces
a magnetic field in the z direction. In the Landau gauge,
A = (0, Bx, 0), the single-particle states (wavefunctions) are
given by

ϕnk(r) = eikyα1/2ϕn(αx + k/α),

ϕn(x) = (
√
π2nn!)−1/2e−x2/2 Hn(x),

(3)

with α = (mωc/h̄)1/2, Hn(x) the Hermite polynomial, ωc =
eB/mc and n the Landau level index.

Because H is time-independent, the Green’s function
Gσ,σ ′(r, r′, t) can be defined as (without the loss of generality,
only t � 0 needs to be considered) [1]

Gσ,σ ′(r, r′, t) = −i Tr[ρψσ (r, t)ψ†
σ ′(r′, 0)], (4)

with ρ = eβ(
−K ) the density matrix, ψσ (r, t) =
eiK t/h̄ψσ (r)e−iK t/h̄ , K = H−μN , N = ∑

σ

∫
drψ†

σ (r)ψσ (r),
the total number of particles and μ the chemical potential.

First, let us consider an unitary transformation U1, given
by

U1 = exp

[
− i

h̄
s ·

∑

σ

∫
drψ†

σ (r)pψσ (r)

]
. (5)

It is easy to verify that U †
1 = U−1

1 , and that under this
transformation, U1ψσ (r)U−1

1 = ψσ (r + s). In deriving this
result, one uses eA Be−A = B + [A, B] + [A, [A, B]]/2! +
[A, [A, [A, B]]]/3! + · · ·. Applying this transformation to H ,
then H1 = U1 HU−1

1 can be written as

H1 =
∑

σ

1

2m

∫
drψ†

σ (r)
[

p + eA(r − s)
c

]2

ψσ (r)

+
∑

σ,σ ′

∫
drψ†

σ (r)
[
g∗μB B

σz

2

]

σ,σ ′
ψσ ′(r)

+ 1
2

∑

σ,σ ′

∫
dr

∫
dr ′ψ†

σ (r)ψ
†
σ ′(r′)V (r − r′)ψσ ′(r′)ψσ (r)

+
∑

σ,σ ′

∫
drψ†

σ (r)
[
αRσx

(
py + eAy(r − s)

c

)

− αRσy

(
px + eAx(r − s)

c

)]

σ,σ ′
ψσ ′(r). (6)

It is evident that H1 differs from H only in the vector
potential, i.e. A = (0, B(x − sx), 0).

Next, let us examine unitary transformation U2, defined as

U2 = exp

[
−

∑

σ

∫
drψ†

σ (r)[iα2sx y]ψσ(r)
]
, (7)

with sx the x component of s. It is easy to verify
that U †

2 = U−1
2 , and that under this transformation,

U2ψσ (r)U−1
2 = eiα2sx yψσ (r). Applying this transformation

to H1, one finds that U2 H1U−1
2 = H exactly. Note that

U1 NU−1
1 = U2 NU−1

2 = N .
Inserting 1 = U−1U (U denotes U1 and U2) into the trace

calculation defining the Green’s function, since the value of the
trace does not change, one obtains

Gσ,σ ′(r, r′, t) = −ieiα2sx (y−y′)

× Tr[eβ(
−K )eiK t/h̄ψσ (r + s)e−iK t/h̄ψ
†
σ ′(r′ + s)]. (8)

Choosing s = −(r + r′)/2, and denoting z = r − r′, one
obtains

Gσ,σ ′(r, r′, t) = Gσ,σ ′(z/2,−z/2, t)e−iα2 (x+x′ )(y−y′)/2. (9)

Let us consider unitary transformation U3, given by

U3 = exp

[
−

∑

σ

∫
drψ†

σ (r)[−iα2xy/2]ψσ(r)
]
. (10)

It is easy to verify that U †
3 = U−1

3 , and that under this
transformation, U3ψσ (r)U

−1
3 = e−iα2 xy/2ψσ (r). Note that

U3 NU−1
3 = N . Applying this transformation to H , one

finds that HS = U3 HU−1
3 differs from H only in the vector

potential. In HS, the vector potential is A = (B/2)(−y, x, 0),
the symmetrical gauge.

Inserting 1 = U−1
3 U3 into the trace calculation defining

Gσ,σ ′(r, r′, t) above, one obtains

Gσ,σ ′(r, r′, t) = G(S)
σ,σ ′(z/2,−z/2, t)e−iα2 (x+x′ )(y−y′)/2, (11)

where the superscript (S) emphasizes that G(S)
σ,σ ′ is calculated

with Hamiltonian HS in the symmetrical gauge.
Note that with the symmetrical gauge, the Hamiltonian

HS is invariant under the transformation of rotation about the
z axis. This is because the electron–electron interaction and
spin–orbit interaction are invariant under the rotation, and the
kinetic energy is also invariant in the symmetrical gauge. Let
us examine this in more detail. The rotation transformation
about the z axis is defined as

U4 = exp

[
− i

h̄
φ0

∑

σ,σ ′

∫
drψ†

σ (r)[Lz + h̄σz/2]σ,σ ′ψσ ′(r)

]
,

(12)
with φ0 the amount of rotation. One has

U4ψ↑(r, θ, φ)U−1
4 = eiφ0/2ψ↑(r, θ, φ + φ0),

U4ψ↓(r, θ, φ)U−1
4 = e−iφ0/2ψ↓(r, θ, φ + φ0),

(13)

2
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for spherical polar coordinates. In cylindrical coordinates, one
has

U4ψ↑(r, φ, z)U−1
4 = eiφ0/2ψ↑(r, φ + φ0, z),

U4ψ↓(r, φ, z)U−1
4 = e−iφ0/2ψ↓(r, φ + φ0, z).

(14)

In the first quantization form, for the symmetrical gauge
case, i.e. A = (B/2)(−y, x, 0), the kinetic energy part of the
Hamiltonian is (p + eA/c)2 = p2 + e2A2/c2 + (eB/c)(x py −
ypx) and x py − ypx = Lz . In cylindrical coordinates,
Lz = (h̄/i)∂/∂φ. Thus, the kinetic energy operator does
not contain φ explicitly, only ∂/∂φ is involved. It is clear
that the Zeeman splitting term is invariant under the rotation
transformation about the z axis, as it only involves σz .

Let us examine the Rashba type spin–orbit interaction
next. This interaction is given by H ′ = σx(py + eAy/c) −
σy(px + eAx/c). In cylindrical coordinates, one has

H ′ = σx [sinφpr + cosφpφ + (eB/2c)r cosφ]
− σy[cosφpr − sinφpφ − (eB/2c)r sinφ]

= (sinφσx − cosφσy)pr + (cosφσx + sinφσy)pφ
+ (eB/2c)(cosφσx + sinφσy)r. (15)

Here pr = (h̄/i)∂/∂r and pφ = (h̄/ir)∂/∂φ. In matrix
format, one has

sinφσx − cosφσy =
(

0 ie−iφ

−ieiφ 0

)
,

cosφσx + sinφσy =
(

0 e−iφ

eiφ 0

)
.

(16)

One sees that

e−iφ0/2σz (sinφσx − cosφσy)e
iφ0/2σz

= sin(φ + φ0)σx − cos(φ + φ0)σy,

e−iφ0/2σz (cosφσx + sinφσy)e
iφ0/2σz

= cos(φ + φ0)σx + sin(φ + φ0)σy .

(17)

Note that the spin–orbit interaction term in the Hamilto-
nian can be written as

Hso =
∫

dr
(
ψ↑(r)
ψ↓(r)

)† [(
0 ie−iφ

−ieiφ 0

)
pr

+
(

0 e−iφ

eiφ 0

) (
pφ + eBr

2c

)](
ψ↑(r)
ψ↓(r)

)
. (18)

This shows that the Rashba spin–orbit interaction is indeed
invariant under rotation transformation about the z axis, given
by U4 above.

Consequently, G(S)
σ,σ (r,−r, t), for the same spin index,

is a function of |r| only, independent of the direction of r.
For different spin indexes, by inserting U †

4 U4 = 1 into the
definition of G(S)

σ,σ ′ , one has

G(S)
↑,↓(r, φ; r ′, φ′; t)

= eiφ0 G(S)
↑,↓(r, φ + φ0; r ′, φ′ + φ0; t),

G(S)
↓,↑(r, φ; r ′, φ′; t)

= e−iφ0 G(S)
↓,↑(r, φ + φ0; r ′, φ′ + φ0; t),

(19)

for any φ0. This shows that

G(S)
↑,↓(r,−r, t) = e−iφG(S)

↑,↓(r, 0; r, π; t),

G(S)
↓,↑(r,−r, t) = eiφG(S)

↓,↑(r, 0; r, π; t).
(20)

Now, it is ready to calculate

Gσ,σ ′(nk, n′k ′, t) =
∫

dr
∫

dr′ ϕ∗
nk(r)Gσ,σ ′(r, r′, t)ϕn′k′ (r′)

=
∫

dz G(S)
σ,σ ′(z/2,−z/2, t)

×
∫

dRϕ∗
nk(R + z/2)ϕn′k′ (R − z/2)e−iα2 Xv, (21)

where a change of integration variables, z = r − r′ = (u, v)
and R = (r + r′)/2 = (X,Y ), is made. Note that the domains
of the r and r′ integrals are the whole xy plane. Thus, the
domains of the z and R integrals are also the whole xy plane.

Let us examine the R integral [22, 23]:

I =
∫

dRϕ∗
nk(R + z/2)ϕn′k′ (R − z/2)e−iα2 Xv

= α

∫ +∞

−∞
dXϕn(α(X + u/2)+ k/α)

× ϕn′(α(X − u/2)+ k ′/α)e−iα2 Xv

×
∫ +∞

−∞
dY e−ik(Y+v/2)+ik′ (Y−v/2)

= αδk,k′

∫ +∞

−∞
dX ϕn(α(X + u/2)+ k/α)

× ϕn′(α(X − u/2)+ k/α)e−iα(αX+k/α)v

= δk,k′ (π2n+n′
n!n′!)−1/2

∫ +∞

−∞
dx e−α2u2/4−x2−ixαv

× Hn(x + αu/2)Hn′(x − αu/2)

= δk,k′ (−1)(n
′−n+|n′−n|)/2 Hn,n′(α2z2/2)ei(n′−n)φ, (22)

where φ is introduced via u = z cos(φ), v = z sin(φ).
Hn,n′(x) = (n!/n′!)1/2e−x/2x |n−n′|/2 L |n′−n|

n (x), for n � n′. For
n � n′, Hn,n′(x) results from an interchange of n and n′ in the
above expression.

Finally, let us examine Gσ,σ ′(nk, n′k ′, t), which can be
written as

Gσ,σ ′(nk, n′k ′, t) =
∫

dz G(S)
σ,σ ′(z/2,−z/2, t)

× δk,k′ (−1)(n
′−n+|n′−n|)/2 Hn,n′(α2z2/2)ei(n′−n)φ. (23)

Since G(S)
σ,σ (z/2,−z/2, t) is independent of the direction

of z, the φ integral immediately leads to the factor δn,n′ .
Therefore

Gσ,σ (nk, n′k ′, t) = Gσ,σ (nk, nk, t)δk,k′ δn,n′, (24)

i.e. the spin-diagonal Green’s function is exactly diagonal
in the Landau level index, even in the presence of electron–
electron interactions. For different spin indexes, G↑,↓ will have
a factor δn′,n+1 and G↓,↑ will have a factor δn,n′+1. That is

G↑,↓(nk, n′k ′, t) = G↑,↓(nk, n′k, t)δk,k′ δn+1,n′,

G↓,↑(nk, n′k ′, t) = G↓,↑(nk, n′k, t)δk,k′ δn,n′+1.
(25)

3
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Note that Gσ,σ ′(nk, n′k ′, t) is actually k independent. The
above equations are the central results of the present paper.

Finally, let us briefly consider a different type of spin–orbit
interaction, which is given by H ′ = σx(px +eAx/c)−σy(py +
eAy/c) in the first quantization form. This is the Dresselhaus
spin–orbit interaction approximated for the two-dimensional
case. For the case of the symmetrical gauge, this spin–orbit
interaction can be written as in matrix form as

H ′ = σx

(
cosφpr − sinφpφ − eBr

2c
sinφ

)

− σy

(
sinφpr + cosφpφ + eBr

2c
cosφ

)

= (cosφσx − sinφσy)pr

− (sinφσx + cosφσy)

(
pφ + eBr

2c

)

=
(

0 eiφ

e−iφ 0

)
pr −

(
0 −ieiφ

ie−iφ 0

) (
pφ + eBr

2c

)
.

(26)

One sees that

eiφ0/2σz (cosφσx − sinφσy)e
−iφ0/2σz

= cos(φ + φ0)σx − sin(φ + φ0)σy,

eiφ0/2σz (sinφσx + cosφσy)e
−iφ0/2σz

= sin(φ + φ0)σx + cos(φ + φ0)σy .

(27)

This indicates that instead of defining U4 previously as

U4 = exp

[
− i

h̄
φ0

∑

σ

∫
drψ†

σ (r)Lzψσ (r)

]

× exp

[
− i

h̄
φ0

∑

σ,σ ′

∫
drψ†

σ (r)[h̄σz/2]σ,σ ′ψσ ′(r)

]
, (28)

now one should define U4 as follows, with a different
transformation for the spin component:

U4 = exp

[
− i

h̄
φ0

∑

σ

∫
drψ†

σ (r)Lzψσ (r)

]

× exp

[
i

h̄
φ0

∑

σ,σ ′

∫
drψ†

σ (r)[h̄σz/2]σ,σ ′ψσ ′(r)

]
. (29)

One finds that, in cylindrical coordinates,

U4ψ↑(r, φ, z)U−1
4 = e−iφ0/2ψ↑(r, φ + φ0, z),

U4ψ↓(r, φ, z)U−1
4 = eiφ0/2ψ↓(r, φ + φ0, z).

(30)

With this newly introduced unitary transformation, one
finds that in a system with Dresselhaus type spin–orbit
coupling, the Green’s function has a similar property as that for
a system with the Rashba spin–orbit interaction. The Green’s
function will have a factor δn,n′ , δn+1,n′ or δn,n′+1, depending
on the spin index involved.

3. Summary

The exact property of the Green’s function of a two-
dimensional interacting electron gas in a perpendicular
magnetic field with spin–orbit interaction is derived. By
assuming that the system is uniform and rotationally invariant,
we obtain some exact and meaningful properties of the Green’s
function. This exact result should be helpful in evaluating the
Green’s function approximately.
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